ころがる狸

ころがる狸のデータ解析ブログ

GAN

【Cycle GAN】GANによるスタイル変換の仕組み解説と実験

こんにちは、Dajiroです。今回は、GANを用いて画像のスタイルを変換できる【CycleGAN】の仕組みをご紹介します。スタイル変換とは、元の画像から別のスタイルの画像に変換できることを指します。6つの損失関数が登場するため中々複雑なモデルですが、1つ1つ…

【Conditional GAN】仕組み解説と画像生成の結果

こんにちは、Dajiroです。今回の記事では【ConditionalGAN】(条件付きGAN, CGAN)についてご紹介します。GANという機械学習技術を用いることで乱数から画像を自動生成できますが、CGANを用いるとどのような画像を生成するか条件付きで指定することができるよ…

【半教師ありGAN】GANによるデータ拡張とMNISTの画像分類

こんにちは。2020年の上半期も終わりそうです。時間が経つのは本当に早いですね。個人的には、ブログをとにかく書きまくった半年でした。 それでは、本日の記事の紹介です! はじめに 半教師ありGANの仕組み 分類器の訓練 生成器の訓練 実装(省略) 実験結…

【DCGAN vs GAN】MNISTの生成画像比較と実装のコツ

こんにちは。先日、多層パーセプトロンモデルを使ったGAN(敵対的生成ネットワーク)で画像生成を行いました。しかし機械学習で画像と言えば、畳み込みニューラルネットワーク(CNN)ですよね。とうわけで生成器・識別器にCNNと転置CNNを使って効率的に画像を学…

【GAN + PyTorch】仕組みの解説とMNISTで画像生成

こんにちは。今日は敵対的生成ネットワーク(Generative Adversarial Network, GAN)を取り上げます。GANというと、適当な乱数から本物そっくりの画像を生成する技術として既にご存じかもしれません。画像以外にも物理モデルの生成や、化合物の構造生成などに…