ころがる狸

ころがる狸のデータ解析ブログ

画像認識

【gMLP解説】イラストで理解する最新の機械学習モデルgMLPの仕組み

ここ数年、機械学習分野では自己注意(self-attention)と呼ばれる仕組みに基づいた学習モデルが様々なアプリケーションに適用され、その性能・汎用性の高さから大きな注目を集めていました。代表的なモデルがTransformerと呼ばれるもので確固たる地位を築いて…

【Cycle GAN】GANによるスタイル変換の仕組み解説と実験

こんにちは、Dajiroです。今回は、GANを用いて画像のスタイルを変換できる【CycleGAN】の仕組みをご紹介します。スタイル変換とは、元の画像から別のスタイルの画像に変換できることを指します。6つの損失関数が登場するため中々複雑なモデルですが、1つ1つ…

【PyTorch×転移学習】学習済みモデルライブラリTIMMのご紹介

こんにちは、dajiroです。今回は高精度な画像分類を行うのに便利なライブラリTIMMをご紹介します。PyTorchでは画像分類用の学習済みモデルが公式で提供されていますが、使われているモデルがやや古く栄枯盛衰の激しい機械学習の世界では現代最高レベルの予測…

【CNN+Grad-CAM】仕組みの解説と画像の予測根拠可視化

こんばんは、Dajiroです。本ブログでは既に画像を予測する方法を学びましたが、今回はCNNによる画像予測の根拠についてご紹介します。その代表的な技術である(Guided) Grad-CAMについての仕組み解説と、実際に得られた予測根拠を見ていきます。画像認識につ…

【pytorch-pfn-extras+Ignite】画像分類のワークフロー解説

こんにちは、dajiroです。今日はPyTorchによる画像分類(CNN)に取り組んでみたいと思います。CNNの仕組み・実装方法に関してはウェブ上に十分な資料があると思うので、ここではPyTorchの学習部分を簡単に実装できるIgniteとpytorch-pfn-extrasいうライブラリ…